(0) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
rewrite(Op(Val(n), y)) → Op(rewrite(y), Val(n))
rewrite(Op(Op(x, y), y')) → rewrite[Let](Op(Op(x, y), y'), Op(x, y), rewrite(x))
rewrite(Val(n)) → Val(n)
second(Op(x, y)) → y
isOp(Val(n)) → False
isOp(Op(x, y)) → True
first(Val(n)) → Val(n)
first(Op(x, y)) → x
assrewrite(exp) → rewrite(exp)
The (relative) TRS S consists of the following rules:
rewrite[Let](exp, Op(x, y), a1) → rewrite[Let][Let](exp, Op(x, y), a1, rewrite(y))
rewrite[Let][Let](Op(x, y), opab, a1, b1) → rewrite[Let][Let][Let](Op(x, y), a1, b1, rewrite(y))
rewrite[Let][Let][Let](exp, a1, b1, c1) → rewrite(Op(a1, Op(b1, rewrite(c1))))
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
rewrite(Op(Val(n), y)) →+ Op(rewrite(y), Val(n))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [y / Op(Val(n), y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)